RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, MARCH 2021

FIRST YEAR [BATCH 2020-23]

Date : 24/03/2021 Time : 11.00 am – 1.00 pm

CHEMISTRY [HONOURS]

Paper : | [CC 1]

Full Marks : 50

[1×12]

$\underline{Group} - \underline{A}$ <u>Unit – I</u>

Answer **any one** question :

1.	a)	If the series limit (shortest wavelength) of Balmer series for hydrogen is 3646 Å, calculate the atomic number of the element, which gives K-series wavelengths down to 0.1 nm.	[3]
	b)	Explain why s orbitals are spherical but p orbitals aren't.	[2]
	c)	Draw and explain the nature of radial probability distribution function for 3s, 3p and 3d orbitals of the H-atom.	[3]
	d)	State Hund's rule and using that deduce ground state term symbol of nd ³ configuration.	[3]
	e)	The value of m_l for a particular orbital is -2, what are the smallest possible values of n and l?	[1]
2.	a)	Establish Bohr's assumption of quantized angular momentum from de Broglie's hypothesis.	[2]
	b)	What is the de Broglie wavelength of an electron that has been accelerated by a potential difference of 500V? (Charge of an electron is 1.602×10^{-19} C and mass of the electron is 9.109×10^{-31} kg)	[2]
	c)	Consider the process of shielding in atoms, using Be as an example. What is being shielded? What is it shielded from? What is doing the shielding?	[3]
	d)	Write down all the term symbols for an ns ¹ np ¹ configuration.	[2]
	e)	What is Stern-Gerlach experiment? What was the conclusion of the experiment and why?	[3]

<u>Unit – II</u>

Answer <u>any one</u> question :				
3.	a)	pK_a value of (HO)ClO _n decreases with increasing the value of n from zero to three – Explain.	[3]	
	b)	What is Lux-Flood concept on acids and bases? Give an example.	[3]	
	c)	Which is a stronger base and why?	[3]	
		i) NH ₃ , PH ₃ and (ii) NH ₃ , PF ₃		
	d)	What is co-solvating effect? Explain with an example.	[3]	
4.	a)	What is gas phase proton affinity? Arrange the following with the increase of Gas phase proto affinity value: F^- , Cl^- , Br^- and Γ^- . Justify your arrangement.	on [3]	
	b)	Calculate the pH value in the following cases of an acid-base titration:	[3]	
		i) 24 ml of 0.2 N sodium hydroxide is added to 25 ml of 0.2 N acetic acid		
		ii) 25 ml of 0.2 N sodium hydroxide is added to 25ml of 0.2N acetic acid		
		iii) 26 ml of 0.2N sodium hydroxide is added to 25 ml of 0.2N acetic acid		

- Reactions of a series of substituted pyridine with hydrogen ions show the order of base strength c) to be 2,6-dimethyl pyridine> 2-methyl pyridine > 2-t-butylpyridine > pyridine, while the reaction with larger acids such as BF₃ or BMe₃ shows the following order of basicity: Pyridine>2-methyl pyridine>2,6-dimethyl pyridine >2-t-butyl pyridine. Explain the difference between these two series.
- d) Rationalize the following data in terms of HSAB theory:

(i) CH_3 - CH_3 + $H_2O \rightarrow CH_3OH + CH_4$	$(\Delta H = 12 \text{ kcal})$
(ii) $CH_3COCH_3 + H_2O \rightarrow CH_3COOH + CH_4$	$(\Delta H = -13 \text{ kcal})$

Unit – III

Answer <u>any one</u> question :				
5.	a)	Balance the following reaction applying Ion-electron method:	[3]	
		$\operatorname{Cr_2O_7}^{2^-} + \operatorname{SO}_2(g) \rightarrow \operatorname{Cr}^{3+}(\operatorname{aq}) + \operatorname{SO}_4^{2^-}(\operatorname{aq})$ (in acidic medium)		
	b)	Describe the function of salt bridge in an electrochemical cell.	[1]	
	c)	What would be the electrochemical potential of hydrogen electrode, when it is placed in a solution having $pH=8.0$?	a [2]	
	d)	Calculate the equilibrium constant for the following reaction:	[2]	
		Cu (s) + $2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag$ (s); $E^{0}_{Cell} = 0.46 V$		
	e)	At 25°C solubility product of AgCl is 1.5625×10^{-10} . At this temperature, calculate solubility of AgCl in water in g/L.	f [2]	
6.	a)	Explain why in a family of ionic compounds a bromide usually has a low boiling point than chloride.	ı [2]	
	b)	In case of $CaCl_2$ and $ZnCl_2$, which one is expected to be more covalent?	[2]	
	c)	Write the mathematical form of Born–Landé equation. Highlight of its significance.	[1+1]	

- d) Calculate the lattice enthalpy of KCl from the following data at standard states: Enthalpy of sublimation of K = 89 KJ/mole; Enthalpy of dissociation of chlorine = 244 KJ/ mole; Ionisation energy of K = 425 KJ/mole; Electron gain enthalpy of chlorine = -355 KJ/mole; Enthalpy of formation of KCl = -438 KJ/mole. [2]
- e) In comparison to AgF, AgI has lower solubility in a polar solvent. Explain.

GROUP B

Answer **any one** question :

a) Write down the IUPAC name for the following molecules: 7.

- b) Draw the orbital picture for : CH₃CH=CH-CN (trans)
- Which of the following molecules should have permanent dipole moment?(No explanation c) needed)

H₂O, N₂, CO₂, CO, HCHO, CBr₄, p-Hydroxyphenol.

[2]

[2]

[2]

[2]

[1×16]

[3]

[3]

d) Compound (A) has higher dipole moment than compound (B) – explain.

- e) Draw the molecular orbital diagram for 1,3,5 hexatriene and also indicate HOMO and LUMO for the molecule.
 [3]
- f) Compare the C=O bond distance in the following molecules and explain:

g) Draw the all canonical structures for the following ion and also find out which one should has greater contribution towards the resonance hybrid.
[2]

8. a) Write down the IUPAC name for the following molecules:

- b) Define with examples: bond moment and group moment.
- c) Which compound has the higher dipole moment: Butan-1,2-dione and cyclopentan-1,2-dione. [2]
- d) Which of the following compounds are aromatic, non-aromatic and antiaromatic according to Huckel rule? Explain for individual compound. [4]

i) p-benzoquinone

ii) cyclooctatratene

- iii) cycloheptatrienyl cation
- iv) cyclopentadienyl anion.
- e) Draw the molecular orbital diagram for 1,3, pentadienyl radical and also indicate SOMO for the molecule.
 [2]
- f) Which one is more stable in each of the following pairs; explain with reasons.

[3]

[2]

[2]

[2]

- × -